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MASS TRANSFER IN A PULSATING BUBBLE* 

V.S. BERMAN and A.D. POLYANIN 

Mass transfer between a pulsating bubble and a surrounding medium at 
large and small Peclet numbers is considered. The dependence of the 
Sherwood number on time is found for an arbitrary periodic law of variation 
of the bubble radius. The case of sinusoidal oscillations is studied in 
detail. 

1. Dynamics of a pulsating bubble. The spherically symmetric oscillations of a 
bubble under various conditions have been studied in many publications (e.g. /l-7/). Let us 
list here the fundamental properties of such motions, which will be of use later when analysing 
mass transfer in a pulsating bubble. 

The radial component of the velocity of the fluid outside the bubble is described by the 
expression 

I', z RZR'/$+ R' = n'H:dt, (1.1) 

Here .r is the radial coordinate, t, is the time and R = /?(t,) is the law of motion of 
the bubble boundary, which can be found, under fairly general assumptions, by solving the 
differential equation /l-S/ 

p (RR” + 3i,R’2) + ItpR’,R = g, (R) + ‘pa (t*) (I.21 

where p and p is the dynamic viscosity and the density of the surrounding medium. 
In order to complete the formulation of the problem we must supplement Eq.(l.Z) by the 

initial conditions ri(0) = N,. R”(O)= 0 where R, is the initial radius of tine bubble. 
(Sometimes a periodic solution of Eq.(1.2) has to be found). 

The function g, in (1.2) is usually chosen in the form /l-5/ 

g* (R) = p,, (R,iR)“~ - p_ - 2aiR (1.3) 

where pm is the static pressure at infinity, 0 is the surface tension, y is the ratio of 
the specific heats and PSO’ is a constant whose dimensions are that of pressure. 

In the case of thin elastic spherical shells (e.g. a rubber ball) oscillating in a liquid 
or gas, a linear function R /a/ must be subtracted from the right-hand side of the expression 
(1.3) when cf = 0. 

In the case of forced oscillation of the bubble, 'p* in (1.2) is a T,-periodic function 
and is responsible for the variation in the pressure field. In this case we can assumed with- 
out loss of generality that the following condition holds: 
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In dimensionless variables Eq.(1.2) becomes 
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(1.4) 

g (a) = g, (WP,, rp @I = ‘p* W’PS 

where p, is a constant chosen as the pressure scale. 

Free oscillations of a bubble in an ideal fluid. When f3=0 and rp=O, Eq.tl.4) can 
be integrated in quadrature. A single integration of (1.4) yields /3/ 

a.e = -g G (a), G (a) = 5 g(z) P dL. (1.5) 
1 

where a2.f when g(i)>0 and a<1 when g(i)<O. 
Integrating (1.5) we obtain an implicit form of the relation connecting the variation in 

the region of the bubble with time 

Cf.61 

The initial conditions a(c)) = i, a'(O) =O were taken into account in deriving formulas (1.5) 
and (1.6). 

we further assume that the function 9 is monotonic and has a unique root a,:g(a,)==O where 

"e > 1 when g(l)>0 and O<o,<l when g (1) < 0. In this case the bubble will oscillate 
between the extremal values a= 1 and n= % where u+l is the root of the equation C(6) = 0. 
The period of oscillations of the bubble is found from the formula T=%(U), which takes into 
account both possible situations: a<&<1 and 1< ~,<a. 

Forced oscillation of a bubble in a viscous fluid near the position of equilibrium. We 

shall now consider thepulsation of a bubble in a field of variable pressure, with maxjpj~l. 

It will be convenient to use the equilibrium radius of the bubble as the scale of the 
length, with the radius determined by solving the algebraic equation g* (R,) = 0. we choose, 

as the scale of the pressure, the quantity ps = R,jag,laR jRzRO (we assume that g, is a monoton- 

ically decreasing function of R). 
When the dimensionless variables are defined in this manner, Eq.(1.4) will have, when 

'p = 0 and by virtue of the property g (1) = 0, a stationary solution a=l. Linearizing (1.4) 
near this point we obtain the following equation for the forced oscillations of the bubble: 

y" -i_ p$“ + y = ip (f), y = a - 1 (1.i) 

When BY0 any solution of Eq.(l.7) will, as f--+rn, approach the periodic mode with 
the same period as that of the function 'p. In the case of sinusoidal oscillations, the 
corresponding solution will have the form 

In this special%case y differs from the function 9 only in the phase shift. 

Forced oscillations of a bubble in the case of low- and high-frequency variations in 
pressure. When the external pressure undergoes low-frequency changes, the function 'c (t) in 
(1.4) will have a long period T>i. In this case we can neglect the derivatives in (l-4), 

and we obtain a relation for the time-dependence of the radius of the bubble by solving the 

algebraic equation #!(a) = -9 (0. 
The high-frequency pressure oscillations correspond to small values of the period of the 

function 'p. When T&f, we find it convenient to use the new variables z= t/T. z = a*i*, 

which enables us to write Eq.(1.4) in the following form: 

-$ + Tflr-“@ $- = + T~z"~ [g (z”~) + rl, (T)] (1.9) 

Here 11,(r)Ssm(f) is a function with a unit period: $ (r) = rp (z + 0. 
We construct the periodic solution of Eq.(1.9) using a regular expansion in the small 

parameter T. Taking into account the property g(i)=O, we can obtain the relation 3 = i f T"+ 
where z2 is the periodic solution of the equation dr2Jdrz = 5/2q(Q. From this we obtain the law 
of motion of the bubble boundary O=Z~~S l-A& sin mt for sinusoidal oscillations 'p = A sin at 
as o= 2nfT-cm 
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Equations of the dynamics of a spherical bubble in a viscous fluid, integrable in quadra- 
tures. Let us now describe some equations of the form (1.4) integrable in quadratures when 
m-0 and B+O. 

Using the standard substitution a' = 11 (a" = udulda) , we reduce the order of Eq. (1.4). Pass- 
ing now to the new variables z= vi, w= U'~U (u= a'), we obtain the Abel equation 

2Dd!JldZ = -2gw -t 225g (22) (i.iO) 

By virtue of the initial condition a=l, a'-0 at f=U, the quantity sought must satisfy 
the condition that W= 0 when z=l. 

In particular, when the function g, is given by formula (1.3), Eq.(l.lO) takes the 
following form when Is= 0, p, = 0: 

wdwldz = --2@ -+ Zzs-sV (1.11) 

Here PS = Pg0 is chosen as the characteristic quantity. 

Eq.(l.ll) is an equation with separable variables when ~=~fa, and becomes homogeneous 
when y = 2/a. In the isothermal case when y= 1, we can obtain from 

the linear equation Zdydu=--uc+ 2b. 
(1.11) by making the 

substitution 5 = i/z, u = w + zpz, In all these cases Eq. 
(1.11) can be easily integrated. Moreover, the solution of Eq.(l.ll) when y=11/12 and y = i,B 

can be written in terms of Bessel functions of order 1/3.*(*Polyanin A.D. Abel equations and 

related equations of non-linear mechanics integrable in quadratures. Preprint 271. Moscow, 

Inst. Problem Mekhaniki, Akad. Nauk SSSR, 1986.) 

2. Formulation of the problem of mass transfer in a pulsating bubble. Let 

us now consider the diffusion of material dissolved in a fluid to the surface of a pulsating 

bubble. 

We know /l, 2/ that the change in the volume of the bubble due to diffusion processes 

takes place very slowly. Therefore, we shall assume that the time-dependence of the radius 

of the bubble is given by the function R = R(t,) satisfying the condition I?,,,< R< Zj,,,,, 

where R,,,/R,,, = 0 (1). The oscillations of the bubble can be caused, for example, by 
periodic variation of the external pressure (specific examples of this type were discussed in 

Sect.1). 
We assume that at the surface of the bubble and away from it the concentration takes 

constant values of zero and C,, respectively, and we can disregard the presence of diffusing 

matter within the bubble. 
The distribution of the concentration within the fluid is described by the equation of 

convective diffusion and boundary conditions 

r = R (t*), C=O; r+oo, c+c, (2.2) 

Here C is the concentration within the continuous phase, D is the coefficient of diffusion 

and u, is the radial component of the velocity of the fluid, determined from formula (1.1). 

Referring the radial coordinaterin (2.1) and (2.2) to the bubble radius R we arrive at 

the problem with fixed boundaries, which has the following form indimensionless coordinates: 

E=l, c=l; g-+03, c-+0 (2.4) 

Here R. is the initial radius of the bubble, P is the Peclet number, T, is the 

characteristic time of oscillation (in the case of free oscillations of the bubble the quantity 

Ro l/p:p, can be taken as T*, see Eq. (1.4)). 
Eq.(2.3) and boundary conditions (2.4) must be supplemented by the initial condition. 

Two situations are of interest. 
Let there be no pulsations when 1< 0. The corresponding stationary solution of problem 

(2.3), (2.4) when a = 1 is given by the expression c = 1/E. In this case the initial con- 

dition will have the form 

t = 0, c = 1/E; (2.5) 

When the bubble oscillates periodically, it makes sense to seek a periodic solution of 

problem (2.3), (2.4). 
The most important characteristic of the mass transfer between the bubble and the 

surrounding fluid is the Sherwood number, which can be calculated using the formula 

Sh = Z/(4nRDC,) = -(ac,i%&=1 (2.6) 

where I is the dimensional magnitude of the total diffusion flux. 
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we shall construct the asymptotic solutions of the problem of mass transfer between the 

pulsating bubble and the surrounding medium for large and small Peclet numbers. 

3. Large Peclet numbers (Psi). le pass, in Eq.(2.3) from the variables t, E to 

the new variables t,q, where the relation n = q(t,g) will be determined later. As a result 

we have 

(3.1) 

we shall require that the function n will cause the expression within the braces to 

vanish. This condition leads to a first-order linear partial differential equation in 9, 

whose solution is given by the formula 

n = a (E" - 1)'la, a = a (t) (3.2) 

Substituting relation (3.2; into (3.1) and (2.4), we obtain the following equation and 

boundary conditions 

we shall construct the asymptotic solution as p-+00, describing the process in the 

whole interval O,i t< 00, on the basis of a two-scale temporal expansion /9, lo/. To do 

this, we shall introduce the additional variable 

7 = t/P (3.5) 

and we will seek the distribution of concentration over the whole region 0 <q < UJ in the 
form of an expansion in inverse powers of the Peclet number 

c = c0 (11, t, z) j P%, (q, t, z) + . . .( q/c, = 0 (1) (3.6) 

Introducing two different time scales increases the number of independent variables. 

Therefore, the time derivative should be calculated using the rule for differentiating a 

composite function using the formula aiat = aiat + p-vvaz. 
Taking into account what was said above, we substitute expansion (3.6) into (3.3). 

Equating coefficients of like powers of P, we obtain the equations 

ac,iat = 0 (11 = 0, cO = 1; 7j --f 00, cO + 0) (3.5) 

Eqs.(3.7) with the corresponding boundary and initial conditions are found to be insuf- 

ficient to determine the principal term of the expansion for the concentration. We can obtain 
from (3.7) only the general form of the solution needed 

co =co(rl,r) (3.9) 

To obtain the necessary additional information on the function CO* we shall use the 
equation for the next term of the expansion, C, (3.8) * Taking (3.9) into account we obtain 
the general solution of Eq.(3.8) 

Cl (119 t+ 7) = t [+ f ($ [ +- ( (q3 + a3)‘/s dt ] f!.$-) __ 2$} + 
0 

In order to make the expansion (3.6) uniformly applicable over the whole interval O< 

t<=J, the ratio cl/c,, must be bounded as t-t 00. Expressions (3.9) and (3.10) imply that 
this condition will hold only when the zeroth term of the expansion c0 satisfies the equation 

(3.11) 

where the positive function f is given by 

(3.12) 
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Eq.(3.11) has a stationary 

The corresponding Sherwood 

solution 

number, which is calculated using the formula (2.6), taking 
expressions (3.2) and (3.13) into account, is equal to 

SII = 2 (t)i[f (0)J @,I 

It is important to note that the solution of Eq. (3.11), as T-+00, will approach the 
"stationary" mode (3.13) irrespective of the initial condition. In the case of periodic 
oscillations of the bubble, relations (3.13) and (3.2) will correspond totheperiodicsolution 
of the problem. 

In case (2.5), the initial condition for the principal term of the expansion of the con- 

centration will have the form 

t = 0, c0 = (n" 4. I)-% 

We now consider some examples. 

lo. Let a(t)+1 as t-too. This condition holds, 

lates for a limited period. (This situation occurs when 

In this case formula (3.12) will yield 

f (11) = (q” + 1)“s 

(3.15) 

for example, when the bubble oscil- 

a shock wave passes through the fluid). 

(3.16) 

Substituting (3.16) into expression (3.13), we obtain C0 = (n" + l)-‘!a. We see that this 
solution satisfies the initial condition (3.15). 

We calculate the Sherwood number using formula (3.14), taking into account (3.16). This 

yields the following simple relation: 

Sh = n3 (t) (3.15) 
2O. When the oscillations of the bubble are periodic, relation (3.12) simplifies and 

takes the form 

where T is the period of the function a. 
Let us consider the small-amplitude oscillations of the bubble 

(3.18) 

(3.19) 

Substituting (3.19) into (3.141, we obtain the functions and integrals appearing in 

formula (3.14): 

f (11) = (I -i q”)“* f I+ 
1 

‘(r”;‘$’ (6p)) , f (0) = I + 6 (P> 

J (0) = 1 - $ (62) 

As a result, we have the following expressions for the Sherwood number and mean Sherwood 

number over a single period of oscillation of the bubble: 

Sh = 1 + 36 + 3P - q(P) + o (<IF’)) (3.20) 

(Sh) = 1 - + (Sz) + CJ ((P)) (3.21) 

In the case of a sinusoidal law of variation of the radius with time, which occurs during 

forced oscillations of the bubble (see Sect.1) and corresponds to 6 =&sin t, eel in (3.19), 

we obtain for the mean Sherwood number (3.21) the expression (Sh) = 1 - O/,Ea + 0 (Es). 

Here we must mention an interesting circumstance. From formula (3.21) it follows that 

when periodic oscillations of the bubble are small, the mean Sherwood number is less than 

unity. At the same time it can be shown that the mean (over the period of the oscillations) 

total diffusion flux towards the surface of the oscillating bubble will be greater than that 

in the case of a bubble at rest. (This assertion can be proved by multiplying the right-hand 

side of formula (3.20) by a' and averaging over one period of the oscillations). 
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4. Small Peclet numbers (P<i). We shall now construct an approximate analytic 

solution of problem (2.3)-(2.5) usinqthemethod of matching the asymptotic expansions /g-11/ 

in small Peclet numbers. 
When E = O(P-'lz), the terms on the right-hand side of (2.3) will be of the same order 

as those on the left-hand side. Therefore, we must separate out two regions: the inner region 

Q(i) = {l < E .< 0 (P-'/3} and the outer region Q(e) = (0 (P-'1:) < E}. In the inner reqion we 

retain the previous variables E, t, and in the outer region we replace E by a compressed 

radial coordinate 

y = P'lz E (4.1) 
We will seek the inner and outer expansions of the concentration, respectively, in the 

form 

(4.2) 

(4.3) 

The terms of the inner expansion are found from Eq.(2.3), and they satisfy the homogeneous 

boundary and initial conditions (this follows from (2.4) and (2.5)): 

5=1, c:) = 0; t = 0, cc) = 0 (n = 1, 2, . . .) (4.4) 
The outer expansion is obtained from the equation 

(4.5) 

which is obtained from (2.3) by making the substitution (4.1). 
The conditions for the matching of the principal terms of the outer expansion (4.3) and 

inner expansion (4.2) yield, taking into account (2.5) and (4.1), an explicit expression for 
the coefficient sy' = P+, as well as the initial and boundary conditions for cy': 

t=O, $)=1/y; y.40, &+I,$; y-+x, cf'+o (4.6) 

substituting (4.3) into (4.5) we obtain the equation for c;): 

(4.7) 

Changing (4.6) and (4.7) from the variables y, t,cr' to new variables 2, t, u, where 

2, = a @)y, U = z$' (4.8) 
we obtain the problem for the usual parabolic equation 

au/at = Puif3 z; t = 0, u = 1; 2 = 0, u = a(t) 

whose solution is well-known. Therefore the principal term of the outer expansion is given 
by the expression 

When Y-+0, formula (4.9), taking (4.8) into account, yields 

t 
Y-+0, w _ ’ da ’ 

Cl --- 
I .&, s ~-&-t-&ya$+o(y) 

Let us substitute (4.10) into (4.3) and change to the inner variable E = p-'l*y. The 
matching condition yields the coefficients of the series (4.2): 

s,(i) = p%, s,(*) =: p (4.11) 
Let us substitute the expansion (4.2), (4.11) into (2.3) and separate terms of like 

powers of F. This yields the equations 
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whose general solutions, satisfying the boundary conditions (4.41, are given by the expressions 

(4.12) 

ttatching the series (4.2) and (4.3) and taking into account (4.10) a& (4.221, we obtain 

Using formula (4.12'1, we can. establish that F$ = P. This enables us to use standard 

methods to formulate the problem for the function &', which will differ from problem (4.31, 

(4.6) only in the initial condition (t = 0, cY' =a) and boundary condition@-+ 0, C?'-+ E (t)iY). 
The solution of the problem for the function c$' has the form 

Let us expand this expression as y-+0, and change totheinner variable. As a result 

of the matching we obtain the boundary condition as ~-*oo for CJ',, and this enables us 
to obtain 

(4.15) 

Substituting expressions (4,12)-(4.15) into the formula (2.61, we obtain the relation 
connecting the Sherwood number with time 

Sh = t f P'bE (E) + P IF (t) - V,adaidtl + 0 (P) (4.16) 

i?e shall consider, as an example, a sinusoidal law of oscillation of the bubble 

a(t) = 1 -+ dc sin t, 31 = 0 (I) (4.l?) 

Substituting (4.17) into the integrand in (4.141, We obtain 

formulas (4.16) anti (4,lsf) yield the periodic dependence of the Sherwood number on time 
as t-+m: 

Sir = 1 -+ Pi!% sin (t +- '/$q t_ 0 (P) 

i.e. the diffusion flux agafnst the bubble, in this approximation, suffers a phase shift of 
n ‘I f. 
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DETE~INATION OF THE EQUILIBRIUM SHAPE OF THE BODIES FORMED DURING THE 
SOLIDIFICATION OF FILTRATION FLOW* 

K.G. KORNBV and V.A. CHUGUNOV 

It is shown that the problem of determining the equilibrium shape of the 
bodies formed when a filtration flow solidifies, can be reduced to the 
Riemann problem with shear. A solitary body is used as an example, and 
an algorithms for determining its boundary is constructed and realized. 
The qualitative properties of the solution of the problem in question 
are studied. 

1. Formulation of the problem. The method of freezing water-laden rocks is widely 
used in building various types of constructions /l/. The process of solidifying a filtration 
flow around a cold source is characterized by the fact that after a time a thermal balance is 
reached. The heat flux densities at the phase boundary become equal, and this means that the 
rate of formation of the solid becomes equal to zero. Thus the shape of the solid formed 
when the filtrationflowsolidifies reaches, in time, its limiting form, which we shall call 
the equilibrium form. 

If we assume that the process takes place in the plane z=z+iy, that the filtration 
obeys D'Arcy's law, that the fluid is incompressible and that the thermophysical character- 
istics of the filtering medium are constant, the mathematical model of the phenomenon in 
question can be represented in the form 

v = -kVp, div v = 0, K,vVt = u+At ZE D if.11 
At8 = 0, z E Dk 

v-+v,, \t+t,, IzI-+oo (1.2) 

li+&!&z = h_&,J&z, t = t, = t,, z E 8D; (1.3) 
t, = t,, < t,, 2 E rb (1.4) 

Here D is the region of filtration, & is the region occupied by the solid, a& is 
its boundary, v is the rate of filtration, p is pressure, k is the coefficient of filtration, 
t, tk are the temperatures in the region D and & respectively, K, is the ratio of the 
heat capacities of the liquid and the filtering medium, .h+, h_ are the thermal conduc- 
tivities in the regions D and Db respectively, a, is the thermal diffusivity in D, n is the 
normal to the surface 8Dkr external with respect to the region Dk, t, is the temperature at 
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